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1. INTRODUCTION

Consider the three-term linear homogeneous recurrence

Yn+2+An Yn+1+BnYn=0, An , Bn # C, n # Z& , (1)

where Z& :=[n # Z : n�&], & being a given integer, and assume that the
following properties hold:

(i) An{0 for all n # Z& ;

(ii)

Bn

AnAn&1

� L, L # C"[1�4, +�), L{0, as n � �;

(iii)

:
�

n=&+1
} Bn

AnAn&1

&L}<�.

In view of (i), Eq. (1) can be taken into the ``canonical form''

22yn+qn yn=0, n # Z& , (2)

where 2 denotes the forward difference operator, and

qn :=&1+
4Bn

AnAn&1

, n�&+1, (3)

by the transformation

Yn=:n yn , :n :=:&+1 `
n&2

k=& \&
Ak

2 + , n�&+2, (4)

with :& and :&+1 arbitrary, :&+1{0; see [15]. It is convenient to write qn

in (3) as

qn=a+gn , (5)

with

a :=4L&1, gn :=4 \ Bn

An An-1

&L+ . (6)

Under the assumptions (ii)�(iii) above, a Liouville�Green (LG for short)
or WKB type approximation result, namely a certain kind of asymptotic
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approximation accompanied by precise bounds for the error terms (in the
spirit of F. W. J. Olver's work for differential equations, [14]), was proved
by the authors for a basis of solutions to Eq. (2), cf. [15, 16, 18].
Asymptotic results then follow for the original three-term recurrence (1) via
the transformation (4). Such results, however, refer to the case a # R (while
gn can be complex). The cases a>0 (i.e., L>1�4, oscillatory difference
equation), and a<0, a{&1 (i.e., L<1�4, nonoscillatory or ``exponential''
case), were treated separately in [15], [18]; when a=0, it is required, in
addition, that gn has finite first (or second) moment [16]. The case a=&1
(L=0) could not be included in our analysis, since the unperturbed equa-
tion 22yn+ayn=0 degenerates, cf. [18]. For other recent contributions to
the asymptotic analysis of second-order linear difference equations, see,
e.g., [3, 7, 8, 22, 23, 24]; a rather complete survey on ``discrete'' LG
theories can be found in [20].

In this paper we extend our previous results to the case when a takes
complex values, obtaining an asymptotic representation of the LG basis,

Y&
n =:n(1&- &a)n [1+=n], Y+

n t:n(1+- &a)n, n � �, (7)

with the error term, =n , bounded as in (12) below. Here is the plan of the
paper. In Section 2, the main asymptotic theorem is stated and proved; in
particular, the holomorphic character of the LG basis is established, when
the coefficients depend holomorphically on some parameter. We also show
the double asymptotic nature of the LG approximation, with respect to n
and the parameter a. In Section 3, qualitative results such as oscillation
and growth of the LG basis solutions are obtained from the asymptotic
representations, and an application is made to the three-term recurrence
satisfied by a well-known subclass of the Blumenthal-Nevai orthogonal
polynomials (cf. [19]), thus completing earlier achievements due to Ismail,
Masson and Saff [8]. In Section 4, the first-order asymptotics in the main
theorem above, along with the basic qualitative results derived by Elliott
for Jacobi polynomials [5], is used to obtain an asymptotic representation
with bounds of the ultraspherical functions of the second kind. In Section 5,
finally, a second-order LG asymptotic theory is developed and applied, in
particular, to ultraspherical functions of the second kind, where precise
bounds are obtained again.

2. THE MAIN THEOREM

The main results of this paper consist first of a theorem, which extends
asymptotic results of the LG type, earlier proved in [Theorem 3.5, 18], for
difference equations like (2) with a # R&"[&1], to complex values of a. In
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addition, the analyticity of the LG recessive solution, when a and gn depend
holomorphically on a parameter, z, is established. The latter result plays a
role in the theory of orthogonal polynomials, as it will be shown in
Section 3.

Theorem 2.1. Consider the linear second-order difference equation

22yn+(a+gn) yn=0, n # Z& , (8)

with a # C"(0, +�), a{&1, and assume ��
n=& | gn |<�. Then, there exist

n1 # Z& and two linearly independent solutions to (8), respectively recessive
and dominant,

y&
n =(*&)n [1+=n], n�n1 , (9)

y+
n t(*+)n, n � �, (10)

where

*\ :=1\- &a (11)

are the roots of the characteristic equation associated to (8) with gn#0, the
square-root denoting the principal branch. For the error term, =n , the estimate

|=n|�
Vn

1&Vn

, Vn := } 1

- &a(- &a&1) } :
�

j=n

|gj |, n�n1 , (12)

holds, where

n1 :=min[n # Z& : Vn<1]. (13)

Moreover, assume that a=a(z), and gn= gn(z), n�&, are holomorphic for
z # 0�C (0 open connected), and that all hypotheses above hold for each
z # 0. If, in addition,

:
�

n=&

| gn| converges uniformly in K, (14)

K being an arbitrary compact subset of 0, then, defining

Mn(K) :=max
z # K

Vn(z), n1(K) :=min[n # Z& : Mn(K)<1], (15)

besides the pointwise estimate in (12) (all quantities depending on z # 0), the
uniform estimate

|=n(z)|�
Mn(K)

1&Mn(K)
, \z # K, n�n1(K), (16)
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holds. Finally, =n(z), and hence y&
n (z), are holomorphic in every open bounded

subset E�0, for each n�n1(E� ), while y+
n (z) is holomorphic in E for

n�n2(E� ), where

n2(E� ) :=min[n�n1(E� ) : y&
n (z){0, 1+a(z)+gn(z){0, \z # E� ]. (17)

Remark 2.2. Both solutions, y&
n (z) and y+

n (z), may be extended to
lower indices using backwards the difference Eq. (8), for every z # K, up
to n=min[+(K ), ni (K )], for i=1 or 2, respectively, where +(K ) :=
min[n # Z& : 1+a(z)+ gn(z){0, \z # K]. Clearly, the solutions extended in
this way are holomorphic in E for n�min[+(E� ), ni (E� )], for i=1 or 2,
respectively. Note that holomorphicity of solutions would be trivial starting
from holomorphic initial values, but, in the present problem, no guarantee
exists a priori that such conditions are satisfied by the LG asymptotic solutions.

Remark 2.3. If we consider the original three-term recurrence Eq. (1),
when An=An(z) and Bn=Bn(z) are holomorphic in 0, and the series in
(iii) converges uniformly on compact subests of 0, then the pointwise limit
L=L(z) in (ii) is holomorphic in 0, and thus a(z) and gn(z) in (5), (6), are
holomorphic in 0. Therefore, Y \

n (z)=:n(z) y\
n (z) are holomorphic in E

for the same indices as y\
n (z), respectively (cf. also Remark 2.2).

Proof of Theorem 2.1. We consider, for convenience, the general case
where a and gn depend (holomorphically) on the complex parameter z.
Clearly, the first part of the theorem (when a and gn are constant with z)
will follow immediately. One first looks for a solution of the form (9),
obtaining the difference equation

(*&(z))2 22=n(z)+2*&(z)(*&(z)&1) 2=n(z)+gn(z)(1+=n(z))=0, (18)

for the error term. Then one can check (pointwise in z # 0) that any
solution to the ``summation equation'', of the Volterra type,

=n(z)=_(z) :
�

j=n

[1&(\(z)) j&n+1] g j (z)(1+= j (z)), (19)

where

\(z) :=
*&(z)

*+(z)
=

1&- &a(z)

1+- &a(z)
,

(20)

_(z) :=
1

2*&(z)(*&(z)&1)
=

1

2 - &a(z)(- &a(z)&1)
,

also satisfies Eq. (18) (provided that the series in Eq. (19) converges). In
fact, it is easily obtained
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2=n(z)=&_(z)[1&(\(z)) j&n] gj (z)(1+=j (z)) | j=n

+_(z) :
�

j=n

[1&(\(z)) j&n] gj (z)(1+=j (z))

&_(z) :
�

j=n

[1&(\(z)) j&n+1] gj (z)(1+= j (z))

=_(z) :
�

j=n

(\(z)) j&n(\(z)&1) gj (z)(1+=j (z)), (21)

and similarly

22=n(z)=&_(z)
\(z)&1

\(z)
gn(z)(1+=n(z))&

\(z)&1
\(z)

2=n(z), (22)

from which (18) follows.
Let K be an arbitrary compact subset of 0, and define recursively the

sequence [=s
n(z)]�

s=0 , z # K, by

=0
n(z) :=0,

=s+1
n (z) :=_(z) :

�

j=n

[1&(\(z)) j&n+1] g j (z)[1+=s
j(z)], (23)

s=0, 1, 2, ...,

for any fixed n�n1(K ). Observe that the maximum in (15), Mn(K ), exists,
in view of the continuity of Vn in K, which follows immediately from (12),
(14). The latter also implies that Mn(K ) � 0 as n � �, which, in turn,
guarantees that n1(K ) is well-defined. It is also crucial to note that the
sequence Mn(K ) is nonincreasing. The sequence in (23) is well-defined since
each series appearing on the right-hand side converges (uniformly in K ).
Indeed, it is easily proved by induction on s that |=s

n(z)|�Cs=Cs(K ), for all
n�n1(K ) and z # K, where C0 :=0, and Cs :=Mn1

(K )(1+Cs&1). In fact,

|=s+1
n (z)|�(1+Cs) |_(z)| :

�

j=n

|1&(\(z)) j&n+1| | g j (z)|

�(1+Cs) Vn(z)�(1+Cs) Mn(K )

�(1+Cs) Mn1
(K )=Cs+1 , (24)

since |\(z)|<1 (see (20)), and Mn(K ) is nonincreasing with n (by (12), (15)).
Finally, note that =s

n(z) are holomorphic in any fixed open bounded subset
E�0, for n�n1(E� ), in view of the uniform convergence and using Weierstrass
theorem (an inductive argument is also used here, taking K=E� ).
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Define now

=n(z) := :
�

s=0

[=s+1
n (z)&=s

n(z)], z # K, n�n1(K ). (25)

Such a series satisfies the ``Weierstrass M-test'', since it is immediately
proved by induction on s that |=s+1

n (z)&=s
n(z)|�[Vn(z)]s+1�(Mn(K ))s+1,

s=0, 1, 2, ... In fact, by definition, |=1
n(z)|�Vn(z)�Mn(K ), and

|=s+1
n (z)&=s

n(z)|�|_(z)| :
�

j=n

|1&(\(z)) j&n+1| | gj (z)| [Vj (z)]s

�2 |_(z)| [Vn(z)]s :
�

j=n

| gj (z)|=[Vn(z)]s+1. (26)

Hence, the estimate (16) (and thus (12) with K=[z]) holds, and (by
Weierstrass theorem) =n(z) turns out to be holomorphic in E for n�n1(E� ).
Clearly, y&

n (z) is also holomorphic in E (for n�n1(E� )) since *&(z) is
holomorphic in 0.

Next we prove that =n(z) solves the summation Eq. (19) for each z # 0.
Writing

=n(z)==1
n(z)+ :

�

s=1

[=s+1
n (z)&=s

n(z)]

=_(z) :
�

j=n

[1&(\(z)) j&n+1] gj (z)

+_(z) ��
s=1 ��

j=n [1&(\(z)) j&n+1] gj (z)[=s
j(z)&=s&1

j (z)], (27)

it suffices to show that interchanging the order of summation is permissible.
In fact, the discrete version of the dominated convergence theorem can be
applied, in view of the estimate

} :
S

s=1

[1&(\(z)) j&n+1] gj (z)[=s
n(z)&=s&1

n (z)] }
�2 | gj (z)| :

S

s=1

|= s
n(z)&= s&1

n (z)|

�2 | gj (z)| :
�

s=1

[Vn(z)]s

�2 | gj (z)|
Vn(z)

1&Vn(z)
, S�1, j�n�n1([z]), (28)
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and the fact that �� | gj (z)|<�. Uniqueness follows at once from (19) by
linearity and the fact that Vn(z)<1 for each z # 0 and n�n1([z]).

We now focus on the second (dominant) solution of (18). Proceeding as
in [18], an application of Cesaro's theorem for complex sequences, earlier
proved in [17], yields (10) (pointwise in z). Note that y&

n (z) is recessive
and y+

n (z) is dominant for each z # 0, since |*&(z)�*+(z)|<1 (cf. (11)).
The idea is to look for a dominant solution of the form

wn(z) :=y&
n (z) :

n&1

k=n2(E� )

Ck(z)
y&

k (z) y&
k+1(z)

=: y&
n (z) Sn(z), z # E, (29)

(cf. [9], Sec. 3.5, Thm. 3.9), Ck denoting the Casorati determinant of y&
k (z)

and wk(z). Now,

Ck(z)=Cn2(E� )(z) `
k&1

j=n2(E� )

(1+a(z)+g j (z)), z # E, (30)

Cn2(E� )(z) being a nonvanishing function of z to be chosen later (cf.
[4, Lemma 2.13]). Having

wn(z)
(*+(z))nt\*+(z)

*&(z)+
n

Sn(z), as n � �, z # E, (31)

from (9) and using the aforementioned complex version of Cesaro's
theorem (pointwise in z), we get

wn(z)
(*+(z))nt

2Sn(z)
2(*+(z)�*&(z))n

=
Cn(z)�( y&

n (z) y&
n+1(z))

(*+(z)�*&(z))n+1&(*+(z)�*&(z))n

t
Cn(z)�(*&(z))2n+1

(*+(z)�*&(z))n+1&(*+(z)�*&(z))n

=
Cn(z)

(*+(z) *&(z))n (*+(z)&*&(z))

=
Cn2(E� )(z)

2 - &a(z) (1+a(z))n2(E� )
`

n&1

j=n2(E� )
\1+

gj (z)

1+a(z)+ ,

n � �, z # E. (32)
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Here we used the fact that *+ *&=1+a and *+&*&=2 - &a. The
product in (32) converges, uniformly in E� , to a certain nonvanishing
function holomorphic in E, say c(z), as it can be shown by the uniform
convergence in E� of the series in (14). Thus, choosing Cn2(E� )(z)=
2 - &a(z) (1+a(z))n2(E� )�c(z), we get wn(z)t(*+(z))n, and that Ck(z) in
(30) is holomorphic, i.e. there is a solution y+

n (z) :=wn(z)t(*+(z))n as
n � �, which is holomorphic in E for n�n2(E� ). K

Remark 2.4. Note that even the mere qualitative asymptotic behavior
of y+

n as n � � could not be obtained by the classical Poincare� or Perron's
theorems [1, 4, 10] (cf. Remark 3.7 in [18]). This has been obtained
also in [8], by similar techniques, within the framework of orthogonal
polynomials; no bounds for the error terms were determined there,
however.

Remark 2.5. The double asymptotic nature, with respect to n, as
n � �, and to the parameter a, as a � �, is clear from the estimate (12).
In particular, Vn=O(a&1) as a � �, a # C"[0, +�). This fact represents
a peculiarity of the Liouville�Green (or WKB) approximation for differen-
tial as well as for difference equations (cf., respectively, [14], and [15],
[16], [18]). Moreover, y\

n are holomorphic functions of a, for a in any
open bounded subset of C"([0, +�) _ [&1]), for n sufficiently large (as
can be seen immediately choosing a(z)#z, and gn constant with z, in
Theorem 2.1).

3. QUALITATIVE RESULTS

The asymptotic results for the LG basis, y\
n t(*\)n (see (9), (10)), allow

us to display their qualitative behavior in various subsets of the complex
a-plane. Recall that a real sequence, yn , is termed oscillatory when for
every N # N there exists n�N such that yn yn+1�0, cf. [19, Appendix 1];
a complex sequence will be called oscillatory whenever both its real and
imaginary parts are oscillatory, non-oscillatory when it is not oscillatory
(i.e., when at least one of the two sequences, Re yn and Im yn , is not
oscillatory).

Setting a :=rei%, we have

(*\)n=(1\- &a)n=\1+r\2 - r sin
%
2+

n�2

exp(i n arg *\), (33)
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from which one can see that (*\)n oscillates if and only if arg *\{0.
When arg *\=0, we have %=? (a<0) and |*\ |=1\- r. Thus (*+)n

does not oscillate if and only if a<0, while (*&)n does not oscillate if and
only if &1<a<0.

Moreover, |*+ |2=1+r+2 - r sin %�2>1 for every a{0, which implies
that (*+)n grows exponentially in absolute value, oscillating whenever
a # (&�, 0). The behavior of (*&)n depends whether |*& |<1 or |*& |>1,
that is whether a lies inside or outside the cardioid C defined by

r=4 sin2 %
2

=2(1&cos %) (34)

(see Fig. 1 in the Appendix).
Going back to the LG basis,

y\
n =|*\ | n exp(i n arg *\)(1+o(1))

=|*\ | n [[(1+o(1)) cos(n arg *\)+o(1))]

+i[(1+o(1)) sin(n arg *\)+o(1)]], (35)

we can show, as in [19, Appendix 1], that both cos(n arg *\) and
sin(n arg *\) alternate in sign and are bounded away from 0 on suitable
subsequences when arg *\{0. It follows that the behavior of y\

n is, for
each given value of the parameter a, the same as that of (*\)n, respectively.
Indeed, y+

n grows exponentially in absolute value, oscillating when
a # C"(&�, 0], while y&

n decreases exponentially when a belongs to the
inside of the cardioid (34), oscillates when a � [&1, 0], exhibits oscillations
of asymptotically constant amplitude when a is on the cardioid, and grows
exponentially oscillating when a is outside the cardioid. Table 1 in the
Appendix summarizes the various cases.

We now turn to the behavior of the LG basis, Y \
n , of the original Eq. (1)

(cf. (7)), namely to the oscillation and growth of Y \
n . These qualitative

properties can be derived from those of y\
n by the transformation (4). We

shall not analyze all possible cases, focusing on certain special instances,
such as the recurrences satisfied by well-known families of orthogonal poly-
nomials (see below). Throughout we shall assume that the assumptions
(i)�(iii) in Section 1 hold. As for the oscillation, consider the case An=
A� n(1+|n) as n � �, A� n # R, �� ||n |<�, which ensures that :nt

const .>n (&A� k �2). When A� n<0 (at least for n sufficiently large), the
oscillatory character of y\

n is conserved in Y \
n , while when A� n>0 or alter-

nates in sign (for n sufficiently large), non-oscillation may be changed into
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oscillation but not conversely, unless L<0. An example of the former
occurrence will be shown below. Concerning the latter, we only need to
observe that arg *+{? and arg *&{?, unless L<0 (recall that *\=
1\- 1&4L by (6) and (11)). In particular, if An has a finite (nonzero)
real limit A, then, in view of condition (ii) of Section 1, Bn also has a finite
limit, and again what was stated above applies on allowing for the sign
of A.

Considering the noteworthy case that An � A # C"R, and the limit of Bn

is real, both Y \
n turn out to be oscillatory (and thus the transformation (4)

takes oscillation as well as non-oscillation in y\
n into oscillation in Y \

n ).
In fact, non-oscillation of Y \

n occurs if and only if arg *\=&arg A, that
is A\- A2&4B # R+, which necessarily requires that A and B are
simultaneously either real or non-real complex.

As for the growth, when >� |Ak �2|<�, the behavior of Y \
n is

unchanged with respect to that of y\
n (that is y+

n and Y +
n grow exponen-

tially, while y&
n and Y &

n both grow or decay exponentially). When
>�|Ak �2| diverges, such behavior may change. This may happen, for
instance, when An has a finite (nonzero) limit, but then

|Y \
n |t |:n(*\)n|t }A2 \1\�1&

4B
A2+}

n

(36)

shows that exponential growth or decay occurs according to whether
|(A�2)(1\- 1&(4B�A2))| exceeds or is less than 1.

The case of finite limits for An and Bn , A{0 and B>0, respectively, is
relevant for the asymptotic theory of orthogonal polynomials. Consider, in
fact, the well-known M(0, 1) class [13], corresponding to an equation like
(1) with

An=an&z, an � 0 as n � �,
(37)

Bn=
bn

4
, bn>0, bn � 1 as n � �,

under the additional assumption

:
�

( |an |+|bn&1|)<�, (38)

cf. [8, 19]. The assumption (38) ensures that all hypotheses of Section 1
are satisfied with
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L=L(z)=
1

4z2 , a(z)=&1+
1
z2 ,

(39)

gn= gn(z)=
bn

(an&z)(an&1&z)
&

1
z2t

bn&1
z2 +

an+an&1

z3 &
anan&1

z4 ,

and thus the Liouville�Green approximation as in Theorem 2.1 holds.
Concerning oscillation and growth of the LG basis y\

n (z) for every fixed
z, the discussion above carries over considering that the cardioid (34) in
the complex a-plane is mapped into a ``walnut-shaped'' curve in the
z-plane, say N, by the transformation z2=1�(1+a) (see Fig. 2 in the
Appendix). Such a curve is symmetric with respect to both axes, and inter-
sects the real axis at z=\1, and the imaginary axis at z=\i�- 3; observe
that the inside [outside] of the cardioid is mapped onto the outside
[inside] of N. See Table 2 in the Appendix.

In Table 3 the oscillation and growth of Y \
n (z)=:n(z)y\

n (z) are shown:
E denotes the ellipse with foci in z=\1 and semiaxes 3�4 and 5�4, on
which |:n(z)(*+(z))n|=1. The recessive solution Y &

n (z) is, instead,
exponentially decreasing for every z, z{\1. Note that, as stated above in
the general case, we have now examples where non-oscillation of y\

n is
changed into oscillation of Y \

n (while the converse cannot occur); compare
Table 2 with Table 3.

It is also worth noting that the classification of the qualitative properties
of Y \

n above, could have been obtained by the asymptotic analysis accom-
plished in [8]; in fact, our basis solutions Y +

n (z) and Y &
n (z) coincide,

respectively, with Y (d )
n (z) and Y (s)

n (z) in [8, Theorems 2a and 2b].
The orthogonal polynomial, say Pn(z), associated with Eqs. (1), (37),

(38), being dominant off the spectrum [6], is asymptotic to Y +
n (z), as

n � �, up to a multiplicative z-dependent factor. Consequently, oscillation
and growth of Pn(z) in different regions of the complex z-plane can be
obtained from the analogous properties of Y +

n (z). In particular, in the
special case of Jacobi polynomials we recover the qualitative properties
derived in the well-known results of Elliott in [5]. It may be of interest to
observe that Elliott's results were obtained by the LG-approximation for
the linear second-order differential equation satisfied by the Jacobi
polynomials, where n is considered a parameter. The double asymptotic
nature of such an approximation, in fact, allows us to obtain asymptotics
with respect to n, as n � �. Moreover, Elliott found in [5], by the same
techniques, an asymptotic representation for another linearly independent
solution to the Jacobi differential equation, which turns out to be, at the
same time, a recessive solution to the Jacobi difference equation (cf. [6]).
In the next section, confined, for simplicity, to the ultraspherical case,
matching such a representation with the discrete LG asymptotics for
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Y&
n (z), we shall be able to obtain asymptotics (with error bounds) for the

so-called ultraspherical functions of the second kind.

4. FIRST-ORDER LG ASYMPTOTICS FOR THE
ULTRASPHERICAL FUNCTIONS OF THE

SECOND KIND

In this section we derive, for the purpose of illustration of the theory
developed in Section 2, an asymptotic representation of the LG-type (hence
equipped with a precise bound for the error term), for the ultraspherical
functions of the second kind. Such functions are defined by

6n(z) :=|
1

&1

(1&t2): P (:, :)
n (t)

z&t
dt, z # C"[&1, 1], :>&1, (40)

and are known to be recessive solutions to the corresponding ultraspherical
difference Eq. [21], i.e. Eq. (1) with

An=An(z)=&
(2n+2:+3)(n+:+2) z

(n+2)(n+2:+2)
,

(41)

Bn=
(n+:+1)2 (n+:+2)

(n+2)(n+2:+2)(n+:+1)
,

while the ultraspherical (or Gegenbauer) polynomials, P (:, :)
n (z), are

dominant solutions for these values of z (cf. Section 3).
Since the set of recessive solutions to Eq. (1) forms a one-dimensional

vector subspace of the space of all solutions [1, Section 6.3], it follows that

6n(z)=C(z) Y &
n (z), (42)

for some n-independent complex function C(z). Upon identification of the
coefficient, C(z), the main theorem in Section 2 yields the desired represen-
tation for 6n(z). For simplicity, the dependence of 6n(z), C(z), Y &

n (z) (and
of other functions involved) on the parameter : is not displayed.

We first identify the function C(z) for z=x # R, x>1. On the one hand,
we recall Elliott's expansion to the first order [5], i.e.,

6n(z)t22n+3:+3�2 1 2(n+:+1)(z2&1) (2:&1)�4

1(2n+2:+2)[z+(z2&1)1�2]n+:+1�2 ,

as n � �, (43)
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uniformly valid for z # C except in a neighborhood of [&1, 1]. On the
other hand, the transformation :n(z) defined in (4) becomes in this case

:n(z)= `
n-2

k=1
\z

2
(2k+2:+3)(k+:+2)

(k+2)(k+2:+2) + , (44)

where we chose &=1 and a&+1=1, and thus, since *&(z)=1&- 1&1�z2,
we obtain after some algebra

Y &
n (z)t:n(z)(*&(z))n

=
16zn&21(2:+1) 1(n+:+1�2) 1(n+:+1)

n! (:+2)(2:+3) 1(:+1�2) 1(:+1) 1(n+2:+1)

_\1&�1&
1
z2+

n

, (45)

as n � �, valid for z # C"[&1, 1]. Hence we derive, for x>1,

C(x)= lim
n � �

6n(x)
Y &

n (x)

=\2?
e +

1�2

2: (:+2)(2:+3) 1(:+1) 1(:+1�2)
16 1(2:+1)

_
x(1&1�x2) (2:&1)�4

[1+- 1&1�x2]:+1�2
. (46)

Here Stirling's formula has been used. Restriction to real values of z is due
to the fact that - 1&1�z2=- z2&1�z for such values, the square roots
denoting principal branches. Now, C(z) is identified by its values for
z=x # R, x>1, as in (46), since it can be shown that it is holomorphic in
C"[&1, 1]. This is true in view of (42), 6n(z) being holomorphic there (cf.
[5]), and of the fact that Y &

n (z) is holomorphic and nonzero in every open
bounded subset of C"[&1, 1], say E, for all n�n2(E� ) (cf. Theorem 2.1).
Therefore

6n(z)=\2?
e +

1�2

2: 1(n+:+1�2) 1(n+:+1)
1(n+1) 1(n+2:+1)

_
(1&1�z2) (2:&1)�4

[1+- 1&1�z2]:+1�2
zn&1 _1&�1&

1

z2&
n

[1+=n(z)],

n�n1([z]), (47)
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(cf. (15)), and

|=n(z)|�
|1&4:2|

4(2n+2:+1) |z2
- 1&1�z2| |- 1&1�z2&1|&|1&4:2|

,

(48)

n�n1([z]). The estimate in (48) has been obtained by (12), since one can
compute

Vn(z)=
1

2 |- 1&1�z2| |- 1&1�z2&1|
:
�

j=n }
1&4:2

z2(2j+2:+3)(2j+2:+1) }
=

|1&4:2|

4 |z2
- 1&1�z2| |- 1&1�z2&1| (2n+2:+1)

, (49)

summing up explicitly the telescopic series in (49). Moreover, such estimate
holds uniformly in every compact subset, K, K/C"[&1, 1], for n�n1(K ),
cf. (15).

Consider now the special family of compact subsets of C"[&1, 1], say
K(R, =, '), obtained deleting from a large disk centered at z=0 with radius
R, two small disks, C(\1, =), centered at z=\1, with radius =, along with
a neighborhood of [&1, 1] of radius '. From the estimate

Vn(z)�
|1&4:2|

4(2n+2:+1) \1+
1

- |1&1�z2|+ , (50)

derived from (49), one obtains, after some manipulations,

Vn(z)�
|1&4:2|

4(2n+2:+1) \1+
1

g(=)+ , z # K(R, =, '), (51)

where

g(=) :=
(1+4=)1�2&1

(2[3+2=&(1+4=)1�2])1�2=O(=), (52)

which clearly holds when R � +� and ' � 0+, that is uniformly, for all
z in C"(C(1, =) _ C(&1, =) _ [&1, 1]). Therefore, the final estimate for the
error term in (47), =n(z), becomes

|=n(z)|�
|1&4:2| (1+1�g(=))

4(2n+2:+1)&|1&4:2| (1+1�g(=))
, n�N(=), (53)

where N(=) :=min[n : 4(2n+2:+1)>|1&4:2| (1+1�g(=))], and this
estimate is uniformly valid for z # C"(C(1, =) _ C(&1, =) _ [&1, 1]).
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5. SECOND-ORDER DISCRETE LG ASYMPTOTICS

The discrete Liouville�Green�Olver asymptotics, developed in Section 2
for the recessive solution, y&

n (z), can be improved by going to higher-order
approximations. We shall do this by splitting the error term =n in (9) as
=n=!n+en , with

!n=O(Vn), en=o(Vn), as n � �, (54)

where !n is an explicitly representable sequence, and en can be estimated
(cf. [19] for a similar extension in the real oscillatory case). In view of the
discrete Liouville�Neumann expansion [14, 19] of the error term in (25)
(for simplicity we do not display the possible dependence on z), we have

=n==s
n+rs

n , |rs
n |�

(Vn)s+1

1&Vn
, s=1, 2, ..., n�n1 , (55)

where =s
n=O(Vn) is recursively defined by (23). The sequence !n could be

identified with =s
n or with its ``dominant part'' with respect to (Vn)s (as

n � �). Below, we follow such an approach for s=1 (second-order theory),
for the special class of difference Eqs. (8) with

gn=cn&p+O(n&q), c # C, n # Z& , (56)

where q>p>1. From (12) it follows that Vn=O(n1& p) and hence (Vn)2=
O(n2(1& p)). Moreover, from (23) for s=0, and (56), obtains

=1
n=_ :

�

j=n

[1&\ j&n+1](cj &p+O( j &q))

=_ {c :
�

j=n

j &p&c\1&n :
�

j=n

\ jj &p

+O \ :
�

j=n

j &q+&\1&nO \ :
�

j=n

\ jj &q+= , (57)

and using well-known asymptotic results for the remainders of the
harmonic series, and of the polylogarithmic [11] power series (in \)
[14, Chapt. 8, Sections 3, 5], we get easily

=1
n=

_c
p&1

n1& p+O(n&min[ p, q&1, 2p&2]), n�n1 . (58)

Note that the constant implied by the O-term in (58) could be estimated
explicitly following the procedure above, provided that a similar estimate
for the O-term in (56) is given. Moreover, when a and gn depend
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holomorphically on z # 0�C, the estimate in (58) can be given in any
fixed compact subset of 0, say K, for all n�n1(K ), cf. (15).

We conclude with an application of the second-order discrete LG theory
developed so far, to orthogonal polynomials. We first note that such a
theory could be applied to the subclass of the M(0, 1) class, characterized
by an#0, and bn=1+;n& p+O(n&q), q> p>1, which includes, for
instance, the entire Jacobi family (cf. (37)�(39) in Section 3). For simplicity,
we work out in detail only the special case of the ultraspherical polyno-
mials, thus refining the first-order asymptotics displayed in Section 4. In
this case, it is more convenient to split the first-order error term in (55) in
a different way. Setting

=1
n(z) :=!n(z)+'n(z), (59)

with

!n(z)=_(z) :
�

j=n

gj (z)=
1&4:2

4(2n+2:+1) - 1&1�z2 (- 1&1�z2&1) z2
,

(60)

and

'n(z) :=&_(z)(\(z))1&n :
�

j=n

(\(z)) j gj (z)

=
_(z)(\(z))1&n

\(z)&1 {(\(z))n gn(z)+\(z) :
�

j=n

(\(z)) j 2g j (z)= , (61)

where summation by parts has been used (see (20) for the definition of \
and _), the term 'n can now be estimated, since, using telescopic sums

}\(z) :
�

j=n

(\(z)) j 2g j (z) }
�|\(z)|n+1 :

�

j=n

|2g j (z)|

=|\(z)|n+1 |1&4:2|
|z| 2

_ :
�

j=n _
1

(2j+2:+1)(2j+2:+3)
&

1
(2j+2:+3)(2j+2:+5)&

=|\(z)|n+1 |1&4:2|
|z| 2

1
(2n+2:+1)(2n+2:+3)

, (62)

317COMPLEX DISCRETE LG ASYMPTOTICS



so that, by |\(z)|<1, we get

|'n(z)|�
|1&4:2| ( |1+- 1&1�z2|+|1&- 1&1�z2| )

4 |z2&1| |1+- 1&1�z2| (2n+2:+1)(2n+2:+3)
. (63)

As for the second-order term, r1
n(z) in (55), using (50), we obtain the

refinement of the asymptotic representation for the ultraspherical function
of the second kind given in (47),

=n(z)=!n(z)+en(z), (64)

where !n(z) is explicitly given in (59), and the second-order error term can
be bounded as

|en(z)|�|'n(z)|+|r1
n(z)|

�
|1&4:2| ( |1+- 1&1�z2|+|1&- 1&1�z2| )

4 |z2&1| |1+- 1&1�z2| (2n+2:+1)(2n+2:+3)

+
(1&4:2)2

4 |z| - |z2&1| |- 1&1�z2&1| (2n+2:+1)

_
1

4 |z| - |z2&1| |- 1&1�z2&1| (2n+2:+1)&|1&4:2|
, (65)

for z # C"[&1, 1], n�n1([z]). A uniform estimate for the second-order
error term, en(z), can also be obtained, along the lines of the previous
section. The result is

|en(z)|�
|1&4:2|

2=2

1
(2n+2:+1)(2n+2:+3)

+
1

4(2n+2:+1)
(1&4:2)2 (1+1�g(=))2

4(2n+2:+1)&|1&4:2| (1+1�g(=))
, (66)

uniformly valid for z # C"(C(1, =) _ C(&1, =) _ [&1, 1]) and n�N(=), cf.
(52), (53).

APPENDIX

In Tables 1�3, the abbreviations ``osc.'' and ``non-osc.'' denote oscillation
and non-oscillation, respectively, while the arrow ``A'' denotes (exponential)
growth, ``a'' (exponential) decay, and ``&'' asymptotically constant
modulus.
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TABLE 1

y+
n y&

n

a # C"R
in C osc. A osc. a
on C osc. A osc. &
out C osc. A osc. A
a>0 osc. A osc. A

a # (&1, 0) non-osc. A non-osc. a
a # (&4, &1) non-osc. A osc. a

a=&4 non-osc. A osc. &
a<&4 non-osc. A osc. A

TABLE 2

y+
n (z) y&

n (z)

z # C"(R _ iR)
in N osc. A osc. A
on N osc. A osc. &
out N osc. A osc. a

z # R, |z|<1 osc. A osc. A
z # R, |z|>1 non-osc. A non-osc. a

z # iR, |z|>1�- 3 non-osc. A osc. a
z=\i�- 3 non-osc. A osc. &

z # iR, |z|>1�- 3 non-osc. A osc. A

TABLE 3

Y +
n (z) Y &

n (z)

z # C"(&�, 1]
in E osc. a osc. a
on E osc. & osc. a
out E osc. A osc. a

z # R, |z|<1 osc. a osc. a
z # R, z<&1

in E non-osc. a non-osc. a
on E non-osc. & non-osc. a
out E non-osc. A non-osc. a
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In Table 1, C denotes the cardioid in the complex a-plane given by (34)
(see Fig. 1). In Table 2, N represents the closed ``walnut-shaped'' curve
obtained mapping the cardioid C into the complex z-plane by the transfor-
mation z2=1�(1+a) (see Fig. 2), in case when the coefficients of the dif-
ference equation depend holomorphically on z, cf. (37)�(39). Such a curve
is symmetric with respect to both axes, and intersects the real axis in
z=\1, and the imaginary axis in z=\i�- 3; observe that the inside [out-
side] of C is mapped into the outside [inside] of N. In Table 3, E denotes
the ellipse with foci in z=\1 and semiaxes 3�4 and 5�4, on which
|:n(z)(*+(z))n|=1, cf. (36) with :n=:n(z)=>n&2

k=1(z&ak)�2 (see also (4)
and (37)).

FIG. 1. The cardioid C defined by r=2(1&cos %), in the plane a=rei%.
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FIG. 2. The ``walnut-shaped'' curve N obtained from the cardioid C under the transfor-
mation z2=1�(1+a).
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